Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chaos ; 28(1): 013129, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29390612

RESUMO

Fronts propagating in two-dimensional advection-reaction-diffusion systems exhibit a rich topological structure. When the underlying fluid flow is periodic in space and time, the reaction front can lock to the driving frequency. We explain this mode-locking phenomenon using the so-called burning invariant manifolds (BIMs). In fact, the mode-locked profile is delineated by a BIM attached to a relative periodic orbit (RPO) of the front element dynamics. Changes in the type (and loss) of mode-locking can be understood in terms of local and global bifurcations of the RPOs and their BIMs. We illustrate these concepts numerically using a chain of alternating vortices in a channel geometry.

2.
Chaos ; 28(1): 013109, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29390624

RESUMO

Understanding the generative mechanism of a natural system is a vital component of the scientific method. Here, we investigate one of the fundamental steps toward this goal by presenting the minimal generator of an arbitrary binary Markov process. This is a class of processes whose predictive model is well known. Surprisingly, the generative model requires three distinct topologies for different regions of parameter space. We show that a previously proposed generator for a particular set of binary Markov processes is, in fact, not minimal. Our results shed the first quantitative light on the relative (minimal) costs of prediction and generation. We find, for instance, that the difference between prediction and generation is maximized when the process is approximately independently, identically distributed.

3.
Phys Rev E ; 95(6-1): 060102, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709305

RESUMO

One of the most basic characterizations of the relationship between two random variables, X and Y, is the value of their mutual information. Unfortunately, calculating it analytically and estimating it empirically are often stymied by the extremely large dimension of the variables. One might hope to replace such a high-dimensional variable by a smaller one that preserves its relationship with the other. It is well known that either X (or Y) can be replaced by its minimal sufficient statistic about Y (or X) while preserving the mutual information. While intuitively reasonable, it is not obvious or straightforward that both variables can be replaced simultaneously. We demonstrate that this is in fact possible: the information X's minimal sufficient statistic preserves about Y is exactly the information that Y's minimal sufficient statistic preserves about X. We call this procedure information trimming. As an important corollary, we consider the case where one variable is a stochastic process' past and the other its future. In this case, the mutual information is the channel transmission rate between the channel's effective states. That is, the past-future mutual information (the excess entropy) is the amount of information about the future that can be predicted using the past. Translating our result about minimal sufficient statistics, this is equivalent to the mutual information between the forward- and reverse-time causal states of computational mechanics. We close by discussing multivariate extensions to this use of minimal sufficient statistics.

4.
Sci Rep ; 7(1): 6735, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28751746

RESUMO

Classical stochastic processes can be generated by quantum simulators instead of the more standard classical ones, such as hidden Markov models. One reason for using quantum simulators has recently come to the fore: they generally require less memory than their classical counterparts. Here, we examine this quantum advantage for strongly coupled spin systems-in particular, the Dyson one-dimensional Ising spin chain with variable interaction length. We find that the advantage scales with both interaction range and temperature, growing without bound as interaction range increases. In particular, simulating Dyson's original spin chain with the most memory-efficient classical algorithm known requires infinite memory, while a quantum simulator requires only finite memory. Thus, quantum systems can very efficiently simulate strongly coupled one-dimensional classical spin systems.

5.
Sci Rep ; 6: 20495, 2016 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-26876796

RESUMO

A stochastic process' statistical complexity stands out as a fundamental property: the minimum information required to synchronize one process generator to another. How much information is required, though, when synchronizing over a quantum channel? Recent work demonstrated that representing causal similarity as quantum state-indistinguishability provides a quantum advantage. We generalize this to synchronization and offer a sequence of constructions that exploit extended causal structures, finding substantial increase of the quantum advantage. We demonstrate that maximum compression is determined by the process' cryptic order--a classical, topological property closely allied to Markov order, itself a measure of historical dependence. We introduce an efficient algorithm that computes the quantum advantage and close noting that the advantage comes at a cost-one trades off prediction for generation complexity.

6.
Chaos ; 25(8): 087404, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26328575

RESUMO

Recent theoretical and experimental investigations have demonstrated the role of certain invariant manifolds, termed burning invariant manifolds (BIMs), as one-way dynamical barriers to reaction fronts propagating within a flowing fluid. These barriers form one-dimensional curves in a two-dimensional fluid flow. In prior studies, the fluid velocity field was required to be either time-independent or time-periodic. In the present study, we develop an approach to identify prominent one-way barriers based only on fluid velocity data over a finite time interval, which may have arbitrary time-dependence. We call such a barrier a burning Lagrangian coherent structure (bLCS) in analogy to Lagrangian coherent structures (LCSs) commonly used in passive advection. Our approach is based on the variational formulation of LCSs using curves of stationary "Lagrangian shear," introduced by Farazmand et al. [Physica D 278-279, 44 (2014)] in the context of passive advection. We numerically validate our technique by demonstrating that the bLCS closely tracks the BIM for a time-independent, double-vortex channel flow with an opposing "wind."

7.
Artigo em Inglês | MEDLINE | ID: mdl-26764802

RESUMO

The dynamics of fronts, such as chemical reaction fronts, propagating in two-dimensional fluid flows can be remarkably rich and varied. For time-invariant flows, the front dynamics may simplify, settling in to a steady state in which the reacted domain is static, and the front appears "frozen." Our central result is that these frozen fronts in the two-dimensional fluid are composed of segments of burning invariant manifolds, invariant manifolds of front-element dynamics in xyθ space, where θ is the front orientation. Burning invariant manifolds (BIMs) have been identified previously as important local barriers to front propagation in fluid flows. The relevance of BIMs for frozen fronts rests in their ability, under appropriate conditions, to form global barriers, separating reacted domains from nonreacted domains for all time. The second main result of this paper is an understanding of bifurcations that lead from a nonfrozen state to a frozen state, as well as bifurcations that change the topological structure of the frozen front. Although the primary results of this study apply to general fluid flows, our analysis focuses on a chain of vortices in a channel flow with an imposed wind. For this system, we present both experimental and numerical studies that support the theoretical analysis developed here.

8.
Artigo em Inglês | MEDLINE | ID: mdl-24827220

RESUMO

We consider two important time scales-the Markov and cryptic orders-that monitor how an observer synchronizes to a finitary stochastic process. We show how to compute these orders exactly and that they are most efficiently calculated from the ε-machine, a process's minimal unifilar model. Surprisingly, though the Markov order is a basic concept from stochastic process theory, it is not a probabilistic property of a process. Rather, it is a topological property and, moreover, it is not computable from any finite-state model other than the ε-machine. Via an exhaustive survey, we close by demonstrating that infinite Markov and infinite cryptic orders are a dominant feature in the space of finite-memory processes. We draw out the roles played in statistical mechanical spin systems by these two complementary length scales.

9.
Chaos ; 23(4): 043106, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24387545

RESUMO

We consider the propagation of fronts in a periodically driven flowing medium. It is shown that the progress of fronts in these systems may be mediated by a turnstile mechanism akin to that found in chaotic advection. We first define the modified ("active") turnstile lobes according to the evolution of point sources across a transport boundary. We then show that the lobe boundaries may be constructed from stable and unstable burning invariant manifolds (BIMs)--one-way barriers to front propagation analogous to traditional invariant manifolds for passive advection. Because the BIMs are one-dimensional curves in a three-dimensional (xyθ) phase space, their projection into xy-space exhibits several key differences from their advective counterparts: (lobe) areas are not preserved, BIMs may self-intersect, and an intersection between stable and unstable BIMs does not map to another such intersection. These differences must be accommodated in the correct construction of the new turnstile. As an application, we consider a lobe-based treatment protocol for protecting an ocean bay from an invading algae bloom.


Assuntos
Modelos Teóricos , Reologia/métodos
10.
Chaos ; 22(3): 037104, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23020495

RESUMO

Recent theoretical and experimental work has demonstrated the existence of one-sided, invariant barriers to the propagation of reaction-diffusion fronts in quasi-two-dimensional periodically driven fluid flows. These barriers were called burning invariant manifolds (BIMs). We provide a detailed theoretical analysis of BIMs, providing criteria for their existence, a classification of their stability, a formalization of their barrier property, and mechanisms by which the barriers can be circumvented. This analysis assumes the sharp front limit and negligible feedback of the front on the fluid velocity. A low-dimensional dynamical systems analysis provides the core of our results.

11.
Chaos ; 21(3): 037107, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974670

RESUMO

We study dynamical reversibility in stationary stochastic processes from an information-theoretic perspective. Extending earlier work on the reversibility of Markov chains, we focus on finitary processes with arbitrarily long conditional correlations. In particular, we examine stationary processes represented or generated by edge-emitting, finite-state hidden Markov models. Surprisingly, we find pervasive temporal asymmetries in the statistics of such stationary processes. As a consequence, the computational resources necessary to generate a process in the forward and reverse temporal directions are generally not the same. In fact, an exhaustive survey indicates that most stationary processes are irreversible. We study the ensuing relations between model topology in different representations, the process's statistical properties, and its reversibility in detail. A process's temporal asymmetry is efficiently captured using two canonical unifilar representations of the generating model, the forward-time and reverse-time ε-machines. We analyze example irreversible processes whose ε-machine representations change size under time reversal, including one which has a finite number of recurrent causal states in one direction, but an infinite number in the opposite. From the forward-time and reverse-time ε-machines, we are able to construct a symmetrized, but nonunifilar, generator of a process--the bidirectional machine. Using the bidirectional machine, we show how to directly calculate a process's fundamental information properties, many of which are otherwise only poorly approximated via process samples. The tools we introduce and the insights we offer provide a better understanding of the many facets of reversibility and irreversibility in stochastic processes.

12.
Chaos ; 21(3): 037112, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21974675

RESUMO

We investigate a stationary process's crypticity--a measure of the difference between its hidden state information and its observed information--using the causal states of computational mechanics. Here, we motivate crypticity and cryptic order as physically meaningful quantities that monitor how hidden a hidden process is. This is done by recasting previous results on the convergence of block entropy and block-state entropy in a geometric setting, one that is more intuitive and that leads to a number of new results. For example, we connect crypticity to how an observer synchronizes to a process. We show that the block-causal-state entropy is a convex function of block length. We give a complete analysis of spin chains. We present a classification scheme that surveys stationary processes in terms of their possible cryptic and Markov orders. We illustrate related entropy convergence behaviors using a new form of foliated information diagram. Finally, along the way, we provide a variety of interpretations of crypticity and cryptic order to establish their naturalness and pervasiveness. This is also a first step in developing applications in spatially extended and network dynamical systems.

13.
Chaos ; 20(3): 037105, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20887071

RESUMO

We adapt tools from information theory to analyze how an observer comes to synchronize with the hidden states of a finitary, stationary stochastic process. We show that synchronization is determined by both the process's internal organization and by an observer's model of it. We analyze these components using the convergence of state-block and block-state entropies, comparing them to the previously known convergence properties of the Shannon block entropy. Along the way we introduce a hierarchy of information quantifiers as derivatives and integrals of these entropies, which parallels a similar hierarchy introduced for block entropy. We also draw out the duality between synchronization properties and a process's controllability. These tools lead to a new classification of a process's alternative representations in terms of minimality, synchronizability, and unifilarity.

14.
Phys Rev Lett ; 103(9): 094101, 2009 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-19792799

RESUMO

We show why the amount of information communicated between the past and future-the excess entropy-is not in general the amount of information stored in the present-the statistical complexity. This is a puzzle, and a long-standing one, since the former describes observed behavior, while optimal prediction requires the latter. We present a closed-form expression for the excess entropy in terms of optimal causal predictors and retrodictors-both machines of computational mechanics. This leads us to two new system invariants: causal irreversibility-the asymmetry between the causal representations-and crypticity-the degree to which a process hides its state information.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...